Fracture mechanics analysis of thin coatings under spherical indentation
نویسنده
چکیده
Spherical indentation of a thin, hard coating bonded to a thick substrate is investigated. The bending of the coating over the softer substrate induces concentrated tensile stresses on the lower and upper coating surfaces, from which transverse cracks may ensue. This work is primarily concerned with ring cracks originating from the top surface of the coating. In-situ indentation tests are carried out on a model glass/polycarbonate bi-layer, with the coating thickness and the indenter radius being the main test variables. As the coating thickness is decreased, the critical load to initiate ring cracks progressively departs from that associated with a critical surface stress, the effect that increases with increasing the indenter radius. A fracture mechanics approach in conjunction with the FEM technique is used to elucidate the onset of cylindrical ring cracks in thin-film bi-layer structures due to spherical indentation. The analysis, conducted as a function of the coating thickness and the indenter radius, reveals the existence of bending-induced compression stress regions ahead of the crack tip, which tend to shield the crack or increase the fracture resistance. The specific behavior is dictated by a complex interplay between the contact radius, a, the coating thickness, d , and the crack length, c. An interesting manifestation of this shielding mechanism is that when the coating surface contains flaws of various sizes, small flaws in this population may be more detrimental than large ones. Incorporation of this aspect into the analysis led to a good correlation with the experimental results. In the limit case of point-load, a closed-form, approximate solution for the stress intensity factors and the critical loads is obtained. This solution constitutes a lower bound for the critical loads, and is furthermore directly applicable to finite size indenters provided d a. In the limit c/d → 0, a failure stress criterion may be used irrespective of the ball radius, r . The analysis in this case reveals that decreasing either d/r or the coating/substrate modulus ratio tend to favor ring cracking over radial type cracking. The transition between these two failure modes is identified explicitly as a function of the system parameters.
منابع مشابه
Fracture mechanics analysis of thin coatings under plane-strain indentation
A combined experimental/analytical work is carried out to elucidate the fracture resistance of a thin, hard coating bonded to a semi-infinite substrate due to indentation by a cylindrical surface. The bending of the coating under the softer substrate induces concentrated tensile stress regions at the lower and upper surfaces of the coating, from which cracks may ensue. The evolution of such dam...
متن کاملTransverse fracture in thin-film coatings under spherical indentation
The competition between transverse surface and sub-surface cracks in a thin, hard coating bonded to polycarbonate substrate due to spherical indentation is investigated in real-time as a function of coating thickness and indenter radius. Fine grain (Y-TZP) and medium grain (alumina) ceramics and pre-abraded amorphous glass are used for the coating. As the coating thickness is reduced, the famil...
متن کاملInstrumented spherical micro-indentation of plasma-sprayed coatings
The mechanical response of plasma-sprayed coatings is studied by recourse to instrumented spherical micro-indentation. It is shown that the elastic moduli of the coatings can be determined in a more reliable and reproducible manner with instrumented spherical indentation than prior (Knoop) indentation methods, while at the same time minimizing damage to the coating during indentation. The resul...
متن کاملAtomic Simulation of Temperature Effect on the Mechanical Properties of Thin Films
The molecular dynamic technique was used to simulate the nano-indentation test on the thin films of silver, titanium, aluminum and copper which were coated on the silicone substrate. The mechanical properties of the selected thin films were studied in terms of the temperature. The temperature was changed from 193 K to 793 K with an increment of 100 K. To investigate the effect of temperature on...
متن کاملAdhesion Strength of Cordierite Bulk Coatings on Molybdenum Substrates
Cordierite was adhered to molybdenum using various metallic interlayers of copper, nickel, and chromium. The development of a coating adhesion test methodology was required to choose between interface designs. An indentation method was chosen because of ease in testing and availability of fracture mechanics interpretations of test data. The interfacial fracture toughness was determined from ind...
متن کامل